If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.6x^2-1.1x-1=0
a = 0.6; b = -1.1; c = -1;
Δ = b2-4ac
Δ = -1.12-4·0.6·(-1)
Δ = 3.61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1.1)-\sqrt{3.61}}{2*0.6}=\frac{1.1-\sqrt{3.61}}{1.2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1.1)+\sqrt{3.61}}{2*0.6}=\frac{1.1+\sqrt{3.61}}{1.2} $
| 5x-4/6=2+3x/2= | | 3=1/81^-x | | X^-x=0.000001 | | 8+x=-48 | | ½x+1=6 | | 65+k=54 | | y-33=-8 | | x/7=4=-5 | | m+23=92 | | 83-a=43 | | |6x+18|=|8x+10| | | 2y-3÷2-y+1÷3=3y-8÷4 | | 7•x-8=713 | | 42=2x7 | | /v-8=7 | | 7x+15=2x+65 | | 47,5=75x/35x | | 13x/7=0 | | W^2-16w-33=-81 | | n(n+3)=208 | | 5/5*x=13 | | 7(x+1)=3(x+4) | | 7x/3=-6 | | 4/(2x)=8 | | 6(x+5)-7(x-3)=-6 | | 16t²-81=0 | | Y=1/65x=0 | | 121x-5(11x)+6=0 | | 2x^2-4x^2-2=0 | | 7x=30–3x. | | 7^x+7^{x+1}=392 | | 2x+21=4x+5 |